The Blaschke Condition for Bounded Holomorphic Functions
نویسندگان
چکیده
منابع مشابه
Bounded Holomorphic Functions on Bounded Symmetric Domains
Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...
متن کاملWeak Topologies on the Bounded Holomorphic Functions
Let G be a region in the complex plane such that there is a nonconstant bounded holomorphic function on G, and denote the algebra of all such functions by BH{G). Let H^{G) denote the Banach algebra that arises when BH{G) is endowed with the supremum norm. In the case where G is the unit disc D, H*>(G) has been extensively studied, mostly by a real-variables analysis of the radial boundary value...
متن کاملMatricial Topological Ranks for Two Algebras of Bounded Holomorphic Functions
— Let N and D be two matrices over the algebra H∞ of bounded analytic functions in the disk, or its real counterpart H∞ R . Suppose that N and D have the same number n of columns. In a generalisation of the notion of topological stable rank 2, it is shown that N and D can be approximated (in the operator norm) by two matrices e N and e D, so that the Aryabhatta-Bezout equation X e N + Y e D = I...
متن کاملHyperbolic Mean Growth of Bounded Holomorphic Functions in the Ball
We consider the hyperbolic Hardy class %Hp(B), 0 < p < ∞. It consists of φ holomorphic in the unit complex ball B for which |φ| < 1 and sup 0<r<1 ∫ ∂B {%(φ(rζ), 0)} dσ(ζ) < ∞, where % denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type g-function and the area function are defined in terms of the invariant gradient of B, and membership of %Hp(B) ...
متن کاملModuli of bounded holomorphic functions in the ball
We prove that there is a continuous non-negative function g on the unit sphere in C d, d ≥ 2, whose logarithm is integrable with respect to Lebesgue measure, and which vanishes at only one point, but such that no non-zero bounded analytic function m in the unit ball, with boundary values m⋆, has |m⋆| ≤ g almost everywhere. The proof analyzes the common range of co-analytic Toeplitz operators in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1970
ISSN: 0002-9947
DOI: 10.2307/1995050